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Ecole Centrale de Lyon, B.P. 163, 69131 Ecully Cedex, France

(Received 14 February 1997, and in final form 16 April 1998)

This paper presents a complete and rigourous derivation of the well-known
power flow equations, by introducing two types of Gaussian random parameters
in the description of the studied structures: the first one deals with the spatial
position, and the latter with the location of the boundaries. Investigations are
carried out for the case of one-dimensional systems (longitudinal vibrations in
rods and transverse displacements in beams). The Simplified Energy Method
equations are found to be the asymptotic form of the random relationships, when
the frequency as well as the standard deviation are sufficiently high. Moreover,
the input powers used in SEM models are restored by the stochastic formulation.
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1. INTRODUCTION

The prediction of high frequency phenomena is an up-to-date subject for engineers
dealing with vibro acoustic and noise transmission in built-up structures. One of
the most commonly used formulation to carry out these predictions, is the
Statistical Energy Analysis (SEA) [1]. An alternative to the SEA is the Power Flow
Analysis based on the original work by Belov et al. [2]. Later , Nefske and Sung
[3] applied the finite element method to deal with the Power Flow Analysis in a
straight transversally vibrating beam. Wohlever, Bouthier and Bernhard [4–6] gave
further results concerning the energy models of rods, Euler–Bernoulli beams,
membranes and Kirchhoff–Love plates. More recently, Lase et al. [7] elaborated
the so-called General Energy Method (GEM), which provides a complete energy
description of rods and beams, using the reactive power flow, the Lagrangian
energy density, the active power flow and the total energy density. Several high
frequency assumptions were then applied by the authors to the GEM equations.
The final simplified form of the GEM is called the Simplified Energy Method
(SEM).

The aim of this paper is to reobtain the SEM and Power Flow Analysis
predictions for rods and beams, by introducing random parameters in the
description of the geometrical parameters of the structures. The stochastic
modelling illustrates the unvoidable degree of uncertainty linked to the high
frequency vibrational response [8]. The expectations of the energy variables are
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evaluated, and it is shown that the SEM energy governing equations are the limit
of the stochastic formulation results when the standard deviation of the random
law increases.

2. PREAMBLE

The present study is concerned with Power Flow Analysis, carried out under
the classical assumptions of elastodynamics, harmonic and steady state conditions.
In this context, the basic energy variables required to describe the vibrational
behaviour of rods and beams are the instantaneous kinetic energy density T(M, t),
the strain energy density U(M, t), and the active energy flow I(M, t). The general
expressions of these variables are:

T(M, t)= (1/2)rS Re 61u(t)
1t 7

2

,

for the rod U(M, t)= (1/2) Re 6ES
1u(t)
1x 7

2

, (1)g
G

G

G

G

G

G

F

f I(M, t)=−Re 6ES
1u(t)
1x 7 Re 61u(t)

1t 7,

T(M, t)= (1/2)rS Re 61v(t)
1t 7

2

,F
G
G
G

for the beam

U(M, t)= (1/2) Re 6EI
12v(t)
1x2 7

2

,

(2)

G
G
g
GI(M, t)=−Re 6EI

13v(t)
1x3 7 Re 61v(t)

1t 7,G
G
G
G +Re 6EI

12v(t)
1x2 7 Re 612v(t)

1x 1t7.f

Re {u(t)} denotes the longitudinal displacement whereas, Re {v(t)} is the
transversal displacement. The parameter r denotes the mass density, S is the cross
section, EI=E0(1+ ih)I is the flexural rigidity. Using the expressions of T(M, t)
and U(M, t), one can define the instantaneous energy density W(M, t) and
lagrangian density L(M, t):

W(M, t)=T(M, t)+U(M, t), L(M, t)=T(M, t)−U(M, t). (3)
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In the following investigations the energy variables are time averaged harmonic
functions. In this context, one can use the property of the produce of the real and
imaginary part of complex harmonic functions:

�Re (f) Re (g)�t=
def v

2p g
2p/v

0

Re (f) · Re (g) dt= 1
2 Re (f · g*), (4)

where f and g represent complex functions. Therefore, the time averages of the
different energy variables are:
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where u and v are the respective complex displacements associated to the variables
u(t)= u exp(ivt) and v(t)= v exp(ivt).

In the following parts, the time averaged energy variables will be used
exclusively. Dealing with Energy Flow Analysis requires the use of the basic energy
balance equation. In steady state conditions and harmonic loading, this equation
is written [7]:

1�I(M, t)�t

1x
+ hv(�W(M, t)�t − �L(M, t)�t )= �p0(xf , t)�t , (7)

where �p0(xf , t)�t is the time averaged input power and xf is the location of the
loading.

3. THE SIMPLIFIED ENERGY FLOW ANALYSIS FOR
ONE-DIMENSIONAL STRUCTURES

High frequency energy flow analysis for longitudinally vibrating rods and
transversally vibrating beams has been carried out by different research groups.
Similar energetic relationships have been proposed, even if the underlying
phenomenological principles differ from one author to another.

Lase et al. [7] developed the GEM, which consists of expliciting the different
terms of the harmonic complex energy flow balance, using a wave description. This
formulation leads to two differential equations involving respectively the total
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energy density, and the active power flow, and the Lagrangian density and the
reactive power flow. Two simplifications of the GEM are proposed by Ichchou
et al. [9]. The evanescent wave field is neglected far from the loading areas and
the discontinuities of the structure, and the interferences between the propagative
waves is not taken for granted. These assumptions lead to neglecting the
Lagrangian density and reactive power flow. The new equations obtained after the
simplifications are the basis of the SEM.

The starting point of Wohlever and Bernhard [4] is quite different. The Power
Flow Analysis is derived from the real part of the harmonic energy flow balance.
The near field contribution is neglected and a spatial average over a wavelength
of the different terms of the latter equation is considered. A relationship is directly
obtained between the explicit spatial averages of the total energy density and the
active power flow.

The main result of the developments of Lase and Wohlever stands in the
following equation, valid for both rods and beams:

��I�t�=−
c2

g

hv

1��W�t�
1x

, (8)

where cg represents the group velocity. �� �t� denotes the time average plus space
average over a half wavelength according to Wohlever, whereas Ichchou et al. [9]
defines this symbol as the time average of the energy variables for which the
interferences between the propagative waves are neglected (as explained
previously). Using equation (8) and a simplified form of the dissipative relationship
[10], Wohlever and Lase finally obtained the following expression of the energy
balance equation, for a non-loaded region:

12��W�t�
1x2 −

h2c2
g

v2 ��W�t�=0. (9)

Equation (9) is solved using energy conditions, in terms of input power and
boundary relationships. The exact input power (difficult to evaluate) is commonly
replaced by the power of the associated infinite or semi-infinite structure [7].

The goal of the following sections is to reobtain these relationships by
introducing random parameters in the definition of the studied structures. In this
context, the expectations of the energy variables are evaluated, and compared to
the results obtained by the SEM.

4. THE RANDOM DESCRIPTION

4.1.   

In this section, a random approach of the high frequency field is introduced.
The general idea is that any attempt to deterministic high frequency prediction is
unrealistic. The reason is that the modal response of mechanical systems is more
and more sensitive to small perturbations of the geometrical and mechanical
parameters of the structures, when the frequency increases [8]. Manohar and
Keane [11] highlight this phenomenon by calculating the successive density
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functions of the eigenfrequencies of a beam, for which a random parameter is
introduced in the definition of its mass density.

There are numerous possibilities concerning the choice of structural parameters
on which can be applied the random variables. Actually, the randomness of the
structure studied in the high frequency field is resulting from small errors occuring
on the global description of the system. Therefore, a stochastic process could be
introduced on the mechanical parameters, such as the mass density or the modulus
of elasticity. In the following analytical formulations, the random parameters are
introduced in the geometrical description of the structures: the boundary
co-ordinates (x1 and x2), the loading location (xf ) and the spatial position (x).
These different geometrical random variables are considered independent two by
two. According to Fahy and Mohammed [12], the choice of geometrical
randomness is relevant. Indeed, when considering individual members of sets of
physical systems which share the same gross characteristics (such as cars leaving
a production line), they differ in geometrical details which can significantly
influence the vibrational behaviour. The following notation is introduced:

x̃1 = x1 + o1,

x̃2 = x2 + o2, (10)g
G

G

G

G

F

f

x̃f = xf + of ,

x̃= x+ o,

where o1, o2, of , and o are Gaussian random variables of zero mean and respective
standard deviations s1, s2, sf and sx . x1, x2, xf and x denote the means of x̃1, x̃2,
x̃f and x̃, respectively.

The energy random variables of the rod and the beam may be expressed using
the different definitions set up previously. Different relationships between the
expectations of the energy variables will be exhibited.

The expectation calculation process of a function (f) of n random independent
Gaussian variables oi (i=1, n), whose respective means and standard deviations
are mi and si , is recalled:

�f(o1,...,on )�o1,...,on =
1

z2p
n g

a

−a

. . . g
a

−a

f(y1, . . . , yn ) t
n
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e−(yi −mi )2/2s2
i

si
dy1 . . . dyn

(11)

where �−�o1,...,on denotes the expectation with respect to o1, . . . ,on .

4.2.       

The expression of the longitudinal displacement of a rod submitted to a point
harmonic loading, is a solution of the classical equation of motion [13], whose
general solution is expressed in terms of superposition of two propagating waves:

u(x)=A1(x1, x2) exp(−ikx)+A2(x1, x2) exp(ikx), (12)
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where u denotes the longitudinal displacement of the forced problem provided that
a subdomain not containing xf is considered. The values of A1 and A2 represent
the amplitudes of the travelling waves, they are obtained utilizing the boundary
conditions. E=E0(1+ ih) is the complex modulus and k denotes the wave number
defined by,

k=zv2r/E0(1+ ih)1 k0(1− ih/2). (13)

The parameter h denotes the hysteretic damping factor, describing the dissipative
characteristic of the rod, while x1 and x2 respectively denote the co-ordinates of
the boundaries of the rod. The time averaged kinetic energy density, the strain
energy density and the active power flow, may be written as:

�T(x)�t =
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4
uu*,

�U(x)�t =
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4

1u
1x

1u*
1x
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2
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u*7.
The geometrical random parameters are introduced in the expression of the energy
variables (14). The expressions of the time averaged energy density, Lagrangian
density and active power flow may then be obtained using equations (3), (12) and
(14). The complete developments are given by Bouthier [5] and Lase et al. [7] for
the particular case of the rod:

�W(x̃)�t = 1
2rSv2{=A1(x̃1, x̃2)=2 e−hk0x̃ + =A2(x̃1, x̃2)=2 ehk0x̃},
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G
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F
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2rScgv

2{=A1(x̃1, x̃2)=2 e−hk0x̃ − =A2(x̃1, x̃2)=2 ehk0x̃},

where cg =v/k0 is the group velocity. The expectations with respect to x̃ of the
energy variables given by the relationships (15) are then evaluated. The details of
calculations of these expectations are given in the Appendix. One finally obtains:

��W(x̃)�t�x = 1
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0s
2
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2rScgv
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2
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where �−�x represents the expectation with respect to the random variable x̃.
Using the relationships (16), one can easily prove that the energy density and the
active power flow satisfy the classical relationship (8):

��I(x̃)�t�x =
c2

g

hv

1��W(x̃)�t�x

1x
. (17)



��
�
�
�
�

F0

x1
L

x

x2

   367

The study of ��L(x̃)�t�x leads to the conclusion that this energy variable vanishes
quickly to zero. Indeed, the term exp[−2k2

0s
2
x ] decreases very rapidly when k0sx

grows. It is then possible to introduce the relationship (17) in the energy balance
equation (7). Furthermore, considering the expectation of the Lagrangian density
equal to zero leads to the following expression of the expectation with respect to
x̃ of the energy balance equation:

−
c2

g

hv

12��W(x̃)�t�x

1x2 + hv��W(x̃)�t�x =0. (18)

The injected power does not appear in the equation since the relationship (18) is
written on a subdomain not submitted to an external loading. Equation (18) is the
fundamental relationship governing the expectation of the time averaged energy
density when the term exp[−2k2

0s
2
x ] is small enough to allow the simplifications

proposed before. This equation is similar to the one obtained by Lase et al. [7]
and Bouthier [5]. In order to solve this equation, boundary conditions are required.
These conditions are expressed in terms of Neumann, Dirichlet or Cauchy
boundary conditions, given on the energy density variable or its first derivative,
corresponding to the expectation of the active power flow, according to equation
(17). The boundary conditions for usual cases of rods are given by Lase et al. [7].
Moreoever, the injected power is introduced at a boundary of a non-loaded
subdomain, on which the energy equation is valid. Therefore, the injected power
must be evaluated for xf equal to x1 or x2. For complex structures, the exact value
of the input power is unavailable, and generally one replaces it by the input power
associated to the impedance of a semi-infinite rod [3], whose expression is:

pinf = 1
2=F0=2 Re {1/rScg}. (19)

In the remainder of this section, it will be shown that one can approximate
��p0(x̃1, x̃2)�t�x1,x2 by pinf in the high frequency field. The symbol �−�x1,x2 denotes
the expectations with respect to x̃1 and x̃2. Therefore, the following energy balance
equation is finally considered, in order to express the input power condition in
terms of pinf :

−
c2

g

hv

12���W(x̃)�t�x�x1,x2

1x2 + hv���W(x̃)�t�x�x1,x2 =0. (20)

The particular case of the cantilever rod loaded at xf = x1 (shown in Figure 1) for
which the explicit expression for �p0(x̃1, x̃2)�t is reachable, is now considered. In

Figure 1. Cantilever rod submitted to a point loading at the free end.
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the following developments, it is shown that different conditions are required to
use pinf in the stochastic formulation.
The expression of the time averaged power input is:

�p0(x1, x2)�t =−Re 6iv2 F0u*(x1)7, (21)

and the expression of the displacement for a cantilever rod loaded at its free end
is:

u(x)=
F0

2ikES
e2ik(x2 − x1) e−ik(x− x1) − eik(x− x1)

1+e2ik(x2 − x1)
. (22)

According to equations (21) and (22), and by replacing x1 and x2 by their
associated random variables x̃1 and x̃2, one can write the expression of the random
input power as follows:

�p0(x̃1, x̃2)�t =Re 6 =F0=2
2rScg

e2ik0(1+ ih/2)(x̃2 − x̃1) − 1
e2ik0(1+ ih/2)(x̃2 − x̃1) + 17. (23)

The input power may be rewritten in terms of a Taylor series expansion with
respect to the term exp[2ik0(x̃2 − x̃1)− hk0(x̃2 − x̃1)] whose modulus is lower than
1. Therefore, one can write:

�p0(x̃1, x̃2)�t =Re 6 =F0=2
2rScg $1+2 s

+a

n=1

(−1)n e2ink0(x̃2 − x̃1) e−hnk0(x̃2 − x̃1)%7. (24)

The evaluation of the expectation with respect to x̃1 and x̃2 of the input power is
possible. Its expression is:

��p0(x̃1, x̃2)�t�x1,x2 =Re 6 =F0=2
2rScg $1+2 s

+a

n=1

(−1)n�e2ink0(x̃2 − x̃1)

× e−hnk0(x̃2 − x̃1)�x1,x2%7
=Re 6 =F0=2

2rScg $1+2 s
+a

n=1

(−1)n e2ink0(1+ ih/2)(x2 − x1)

× eh2n2k2
0(s

2
1 + s2

2)/2 e−2ihn2k2
0(s

2
1 + s2

2)/2 e−2n2k2
0(s

2
1 + s2

2)%7. (25)
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Equation (25) is an expanded form of the expectations with respect to x̃1 and x̃2,
of the time averaged active power flow. The limit of this series expansion when
k0s1 and k0s2 grow, is pinf .

The simplifications which have been carried out in the previous developments
would still have been valid if another random law had been chosen. For example,
one may consider a uniform law which is of major interest to simulate random
variables for which the probability of belonging to a specific interval, is
proportional to the length of this interval. Its probability density function is
f(y)=1/(2(a−m)), where m is the mean and a is the half width of the law. Using
the uniform law, one can calculate the expectation of a generic term
exp[2ik0x] exp[2ik0o]. The choice of this term is relevant when considering for
example the expression of the Lagrangian density given by equations (15). o is a
random variable of zero mean. Thus, the expectation is expressed as follows:

�e2ik0x e2ik0o�o =e2ik0x
1
2a g

a

−a

e2ik0y dy

=e2ik0x
e2ik0a −e−2ik0a

2ik0a

=e2ik0x
sin (2k0a)

k0a
. (26)

When k0 is sufficiently high, the expectation of exp[2ik0(x+ o)] converges to zero
and consequently it can be shown that the expectation of the Lagrangian density
converges to zero when the frequency increases. This particular example could be
extended to the different random terms.

Different figures representing the evolution of the time averaged energy density
and input power, versus the frequency or the standard deviation, are proposed for
the following values of the geometrical and mechanical parameters of the rod:
rS=0·78 kg/m, ES=2·1×107 N, L=20 m, x=10 m, h=0·02% and
F0 =1 N. The standard deviations of the different random variables are fixed to
the same value denoted s.

Figure 2 is a comparison between the time averaged energy density and the
expectations with respect to x̃, x̃1 and x̃2, of the time averaged energy density for
two values of s. The expression of the expectation of the energy density is obtained
considering equation (15) and replacing A1 and A2 by their explicit values, given
by equation (22). The calculation of the expectations is then carried out in an
analytical way, using the definition (11).

This figure illustrates the growing influence of the random parameters when the
frequency increases. Indeed, the low frequency behaviour of the stochastic
formulation is in good agreement with the deterministic response. The first
eigenfrequencies are still represented. Moreover, the frequency range for which the
stochastic formulation and the deterministic calculations provide similar
responses, depends on the value of s. On the other hand, the expectation of the
time averaged total energy density gives a smooth trend of the deterministic
response in the high frequency domain.
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Figure 2. Cantilever rod: a comparison of the frequency evolution of the deterministic energy
density (····), and expectations of the energy density, for s=0·3 (–––) and s=0·8 (——).

Figure 3 provides a comparison between the energy density obtained by the
stochastic formulation and the solution of equation (18) solved for
��p0�t�x1,x2 = pinf . The speed of convergence of the stochastic energy variable to
the solution of equation (18) depends on the values of the standard deviations.

Figure 4 illustrates the input power obtained by the stochastic formulation
divided by pinf . When the standard deviations are sufficiently high, one can observe
that ��p0�t�x1,x2 is in good agreement with pinf (the ratio converges to 1). Moreover,
for high values of the frequency, ��p0�t�x1,x2 and pinf converge for small values of
s.

The analytical results obtained in this part for the particular case of a cantilever
rod, tend to prove that the SEM equations are reobtained by the stochastic
formulation as long as k0s is large enough. Indeed, for a given frequency level,
solving equation (18) and using pinf is valid as far as the standard deviation is
sufficiently high. If the frequency value is low, the validity domain is obtained for
large values of s. On the other hand, high frequency investigations using the
approximate stochastic differential equation (18), is allowed for much smaller
values of the standard deviation. Thereby, when referring to the physical definition
of the random parameters, one can easily deduce that considering large values of
the standard deviation does not make sense. In conclusion, the respect of the
physics of the studied structure implies that the simplified energy governing
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Figure 3. Cantilever rod: frequency evolution of the energy density of the deterministic case (····),
solution of equation (17) (——), and stochastic formulation for s=0·8 (–––).

equation as well as pinf must be used only in the high frequency domain. Moreover,
the proof concerning the validity of pinf is generalized to any type of rods. Indeed,
the expression of pinf , obtained for the particular rod studied in this section, is not

Figure 4. Cantilever rod: evolution of the expectation of the input power divided by the
semi-infinite input power versus the standard deviation (s) and the frequency.
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a function of its geometrical description. Therefore, it is assumed that the same
expression would have been obtained for any type of rod.

Similar calculations could have been handled if the random parameter had been
introduced on another structural parameter. It is assumed that similar conclusions
could have been drawn. However, this approach corresponds to a complete
reformulation of the problem, taking into account new fundamental random
assumptions.

4.3.       

It will be shown in this section that the main conclusions obtained for the rod
remain valid in the case of flexural motion. Thereby, the former process is resumed
by expressing the general solution of the governing equation of the beam in terms
of the superposition of two propagative waves, and two evanescent waves:

u(x)=A1(x1, x2) exp(−ikx)+A2(x1, x2) exp(kx)

+ B1(x1, x2) exp(−kx)+B2(x1, x2) exp(kx), (27)

where u represents the displacement on any subdomain of the beam which does
not contain external loadings. The parameter k denotes the complex wave number
and E=E0(1+ ih) is the complex modulus:

k1 k0(1− ih/4)=v2 rS
E0I

(1− ih/4).

The parameter I represents the moment of inertia. The expressions of the slope
(u), the bending moment (M), and the shear force (V) are deduced from the
expression of the displacement, using the classical relationships [13]:

u=
1u(x)
1x

, M=−EI
12u(x)
1x2 , V=EI

13u(x)
1x3 . (28)

One can write the analytical expressions of the kinetic and strain energy density
and the active power flow as follows:

�T(x)�t =
rSv2

4
uu*,

�U(x)�t =
E0I
4

12u
1x2

12u*
1x2 , (29)

g
G

G

G

G

F

f�I(x)�t =Re 6−iv
2

(Vu*+Mu*)7.
The contribution of the evanescent wave is neglected far from the loading point
and the boundaries. Therefore, the expressions of the time averaged energy
density, Lagrangian density and active power flow are only expressed as a function
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of A1(x1, x2) and A2(x1, x2) as follows (the entire analytical developments may be
found in reference [5]):

�W(x)�t = 1
2rSv2{=A1(x1, x2)=2 e−hk0x + =A2(x1, x2)=2 ehk0x

+ A1(x1, x2)A*2 (x1, x2) e−2ik0x

+ A*1 (x1, x2)A2(x1, x2) e2ik0x} (30)g
G

G

G

G

G

G

F

f

�L(x)�t =0,

�I(x)�t =
−1
2

rSv2cg{=A1(x1, x2)=2 e−hk0x − =A2(x1, x2)=2 ehk0x}.

The same operations as for the rod are carried out. First of all, the different
geometrical variables (x1, x2 and x) are considered as random variables. The
notations and definitions introduced in the previous section are utilized in this part
with any further explanations.

The expectations with respect to x̃, of the time averaged energy density has the
following expression:

��W(x̃)�t�x = 1
2rSv2{=A1(x̃1, x̃2)=2 e−hk0x eh2k2

0s
2
x /2 + =A2(x̃1, x̃2)=2 ehk0x eh2k2

0s
2
x /2

+ A1(x̃1, x̃2)A*2 (x̃1, x̃2) e−2ik0x e−2k2
0s

2
x

+A*1 (x̃1, x̃2)A2(x̃1, x̃2) e2ik0x e−2k2
0s

2
x}. (31)

The expectation with respect to x̃ of the active energy flow may be written:

��I(x̃)�t�x =
−1
2

rSv2cg{=A1(x1, x2)=2 e−hk0x eh2k2
0s

2
x /2

− =A2(x1, x2)=2 ehk0x eh2k2
0s

2
x /2}. (32)

Equation (31) may be rewritten in a simple way by neglecting the terms multiplied
by exp[−2k2

0s
2
x ]. This approximation is valid when the frequency, as well as the

standard deviation are sufficiently high. Therefore, the approximate energy
variables obtained by the stochastic formulation for the beam may be written:

6��W(x̃)�t�x = 1
2rSv2{=A1(x̃1, x̃2)=2 e−hk0x eh2k2

0s
2
x /2 + =A2(x̃1, x̃2)=2 ehk0x eh2k2

0s
2
x /2},

��I(x̃)�t�x = 1
2rSv2cg{=A1(x̃1, x̃2)=2 e−hk0x eh2k2

0s
2
x /2 − =A2(x̃1, x̃2)=2 ehk0x eh2k2

0s
2
x /2}.

(33)

As well as for the rod energy formulation, one can write a relationship valid in
the high frequency range, between the expectations of the time averaged active
power flow and energy density, expressed by the relations (33). This relationship
leads to the standard form of the energy governing equation obtained by Wohlever
and Bernhard [4], between the space averages over a half wavelength of the energy
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density and the injected power. For large values of k0sx , the stochastic energy
governing equation is:

−
c2

g

hv

12��W(x̃)�t�x

1x2 + hv��W(x̃)�t�x =0. (34)

The expectation with respect to x̃1 and x̃2 of equation (34) is considered, in order
to replace the input power injected at one boundary of the subdomain on which
equation (34) is valid, by the input power of the associated semi-infinite structure.
Therefore, xf is assumed to be equal to x1 or x2. One finally obtains the following
energy equation:

−
c2

g

hv

12���W(x̃)�t�x�x1,x2

1x2 + hv���W(x̃)�t�x�x1,x2 =0. (35)

Solving equation (35) requires two boundary conditions corresponding to
Neumann, Dirichlet or Cauchy conditions. Moreover, the evaluation of
��p0(x̃1, x̃2)�t�x1,x2 is carried out. As well as for the rod, a particular case is
considered corresponding to the cantilever beam loaded at xf = x1 (see Figure 5).

The general analytical expression of �p0(x1, x2)�t is recalled:

�p0(x1, x2)�t =−Re 6iv2 F0(x1)u*(x1)7. (36)

A realistic evaluation of the input power must take into account the contribution
of the evanescent wave field, whose influence is not negligible near the loading.
In the case of a clamped free beam, the displacement at the free end of the beam
has the following expression:

u(x1)=
F0

k2
0EI

tan k(x2 − x1)− tanh k(x2 − x1)

1+
1

cos k(x2 − x1) cosh k(x2 − x1)

. (37)

The expectation of the time averaged power input with respect to x̃1 and x̃2 must
be developed. In order to simplify the calculation of the expectation of
�p0(x1, x2)�t , two approximations are proposed: the term tanh k(x̃2 − x̃1) is
considered deterministic; actually, its value converges rapidly to 1 when the
frequency increases. The fraction 1/cos k(x2 − x1) cosh k(x2 − x1) is neglected,
since the hyperbolic cosine increases quickly.

Figure 5. Cantilever beam submitted to a point loading at the free end.
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Using the two previous approximations, and expanding the expression of the
input power in terms of a Taylor series, one finally obtains:

��p0(x̃1, x̃2)�t�x1,x2 1Re 6 iF2
0v

2k3
0EI 01+ i+2i s

+a

n=1

(−1)n e−2ink(x2 − x1) en2h2k2
0(s

2
1 + s2

2)/2

× e2in2hk2
0(s

2
1 + s2

2) e−2n2k2
0(s

2
1 + s2

2) − tanh k(x2 − x1)17. (38)

A cantilever beam is considered (see Figure 5). Its geometrical and mechanical
characteristics are: rS=0·78 kg/m, EI=2·1 N m2, L=2 m, h=0·02% and
F0 =1 N. The expressions of the input power used in the exact formulation, the
SEM, and the stochastic formulation, are numerically evaluated and illustrated
versus the frequency (see Figure 6). It is stated that sx = s1 = s2 = s.

The ratio of the input power evaluated by the stochastic formulation and the
input power of the associated infinite structure are given versus both frequency
and standard deviation (see Figure 7). As well as for the case of the rod, these
two figures show that the accuracy of the modal description obtained by the
stochastic formulation in the low frequency field, depends on the value of the
standard deviation.

For a given value of the frequency, Figure 7 illustrates that the expectation of
the input power obtained by the stochastic formulation, converges to the input
power of the SEM when s increases.

Figure 6. Cantilever beam: a comparison of the frequency evolutions of the deterministic input
power (····), its expectation for s=0·04 (——) and pinf (–.–).
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Figure 7. Cantilever beam: evolution of the expectation of the input power divided by pinf versus
the standard deviation (s) and the frequency.

5. CONCLUSION

In this paper, the principal theoretical results obtained by the Simplified Energy
Method for isolated bars and beams are recovered, using a random description
of the mechanical systems. Indeed, independent Gaussian random variables are
introduced in the description of the geometry of the structures: the boundaries,
the loading location and the spatial position. In this context, it is proved that for
both rods and beams, the expectations of the energy variables with respect to the
random variables mentioned previously, satisfy for large values of k0sx the
standard governing energy equations (18), and (35). Moreover, the stochastic
formulation allows the use of pinf when k0s1 and k0s2 are sufficiently high. Indeed,
the stochastic approach highlights a transition zone connecting the deterministic
expression �p0�t to pinf .

In other respects, the stochastic formulation is a way to exhibit the bounds of
the low, mid and high frequency ranges. Indeed, the low frequency range may be
defined as the domain for which the deterministic and the stochastic results give
approximately the same results. On the other hand, the high frequency domain
is reached when the simplified energy governing equation becomes valid.
Obviously, the mid frequency range is the complementary of the two former
domains. Thus, the numerical values of the limits of the three domains depend on
the values of k0sx , k0s1 and k0s2.
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APPENDIX: EVALUATION OF THE EXPECTATIONS

The procedure for obtaining the different expectations of the term present in the
expressions of the energy variables is illustrated. A generic term of the type
exp[ik(x+ o)] is considered. o represents a random variable, while k= k0(1− ih/2)
denotes a complex constant. It is assumed that x is deterministic. Consequently,
the calculation of the expectation is simply carried out on exp[iko]. o is a Gaussian
random variable of zero mean and standard deviation s. The probability density
function of o may be written as:

f(y)=
1

z2ps
e−y2/2s2. (A1)

The expectation of exp[iko] is then analytically evaluated:

�eiko�o =
1

z2ps g
a

−a

e−y2/2s2 eiky dy . (A2)

A change of variable is carried out:

X=
y

z2s
. (A3)
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Thus, the expectation may be written:

�eiko�o =
1

zp g
a

−a

e−X2 + ikz2sX dX

=
1

zp g
a

−a

e−X2 + hk0z2/2sX+ik0z2sX dX

=
eh2k2

0s
2/8

zp g
a

−a

e−(X− hk0z2/4s)2 eik0z2sX dX. (A4)

A new change of variable is carried out:

Y=X− hk0
z2
4

s. (A5)

Therefore, using the property of unparity of the imaginary part of the function
one finally obtains:

�eiko�o =
eh2k2

0s
2/8 eihk2

0s
2/2

zp g
a

−a

e−Y2 eik0z2sY dY

=
eh2k2

0s
2/8 eihk2

0s
2/2

zp g
a

−a

e−Y2 cos (k0z2sY) dY. (A6)

The value of the integral is well known and is given in books dealing with classical
mathematical functions [14]. The final result is:

�eiko�o =
eh2k2

0s
2/8 eihk2

0s
2/2

zp
zp e−k2

0s
2/2

= eh2k2
0s

2/8 eihk2
0s

2/2 e−k2
0s

2/2. (A7)

It is also possible to evaluate the expectations of more simple terms appearing in
the energy expressions, such as exp[ik0o] and exp[hk0o/2]. One finally obtains:

�eik0o�o =e−k2
0s

2/2,

�ehk0o/2�o =eh2k2
0s

2/8. (A8)


